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Fig. 3. Frequency variation of 3, 10, and 20-dB points on the far-field
patterns. Frequency is in units of the center frequency, and angles are in
degrees. Sofid figures represent data measured near AO= 34.2 mm and open
figures represent data measured near & =1.4 mm.
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Fig. 4. Fractional power outside a cone of a given polar angle.

levels are considerably reduced in comparison with single-mode
radiation patterns for a cylindrical waveguide [3].

The beam efficiency was obtained by integrating the 34.2-mm
patterns over all solid angles. Fig. 4 shows the fractional power
outside a cone of a given polar angle.

For the 34.2-mm horn, far-field phase measurements were
performed. The phase center was found to be 6.46 AO back from

the aperture. The far-field phase deviation relative to a spherical
wave centered at this point are summarized in Fig. 5.

Waveguide reflection loss was measured over a 30-percent
bandwidth centered at 34.2 mm. The reflected power was less
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Fig. 5. Far-field phase deviation in degrees from a sphere &rrtered at the
phase center measured near A.= 34.2 mm.

than – 23 dB over the whole band, corresponding to a VSWR of

1.15.

IV. CONCLUSIONS

We have designed and tested a dual-mode horn at four differ-

ent wavelengths. The horn has low sidelobe levels and nearly

equal E and H plane patterns. The patterns provide a good
match to a Gaussian beam. The far-infrared patterns have a
single well-defined phase center which is independent of polariza-
tion and frequency. The VSWR is quite low, and adequate for
near-millimeter applications. The bandwidth of the horn is be-
tween 10 and 20 percent, depending on the level of acceptable
performance required.
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An Analytical Method for the Capacitance of the

Rectangular Inhomogeneous Coaxial Line Having

Anisotropic Dielectrics
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Abstract —An arsalyticaf technique for the capacitance of a rectarqytlar
inhomogeneotrk coaxial Iirie with zero thickness offset inner conductor andl
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having anisotropic dielectrics is briefly outlined. The spectral domain
technique in discrete Fourier variable, under quasi-static approximation, is
used to determine the capacitance expression. Numerical data are pre-

sented on the capacitance of rectangular homogeneousfllnhomogeneous

coaxial lines having anisotropic dielectrics. The capacitance values ob-
tained using the analytical techuique presented are found to be in good

agreement with the results reported using numerical techniques by other

authors.

1. INTRODUCTION

Rectangular coaxial transmission lines consisting of an air

dielectric with a thin center conductor have been extensively used

in electromagnetic (Em susceptibility and emission testing,

calibration of radiation survey meters, biological effects of RF

exposure, and electric and magnetic field probes for VHF and

UHF bands [1]–[2]. The impedance data on this transmission line

obtained by various workers, using different analytical and

numerical techniques, are reviewed and compared in [1]. The data

on the capacitances of rectangular structures for the edge-offset

and also broadside-offset finite-thickness strip conductor have

been obtained by Chen [3]. Singular integral equation technique

has been used by Tippet and Chang [4] to derive the capacitance

formula of the rectangular coaxial line with offset zero thickness

inner conductor. A simpler method known as the ‘Transverse

Transmission Line’ method in conjunction with the variational

technique in space domain has been reported by Bhat and Koul

[5] for analyzing edge-offset and broadside-offset shielded strip-

line, also known as rectangular coaxial line, with isotropic dielec-

trics. In subsequent papers, this technique has been extended to
analyze shielded structures with uniaxially anisotropic substrates
[6]-[7].

Recently, a numerical calculation of the capacitance of a
rectangular homogeneous coaxial line with offset inner conductor
having an anisotropic dielectric with tilted optical axis has been
reported [8]. Data on capacitance of this transmission line for
various angles of tilt between the principal axes of the substrate
and the x – y coordinate system are given in this paper. To date,
there is no analytical technique reported in the literature for
solving such structures. Further, there is no analytical/numerical
technique reported for analyzing the capacitance characteristics
of a rectangular inhomogeneous coaxial transmission line having
anisotropic dielectrics.

In this paper, a brief outline of the analytical technique used is
described. The method uses the spectral domain technique with
discrete Fourier variable, under quasi-static approximation. The
capacitance expression for rectangular inhomogeneous coaxial
lines with offset inner conductor having anisotropic dielectric
substrates is presented. A comparison of the capacitance char-
acteristics of rectangular symmetric homogeneous coaxial lines
using the present theory with those reported in [8] is made.
Numerical data are presented for a rectangular inhomogeneous
coaxiaf line having anisotropic dielectrics.

II. BRIEF OUTLINE OF THE ANALYTICAL PROCEDURE

Consider a general rectangular coaxial line having an offset

inner conductor sandwiched between three anisotropic dielectrics

as shown in Fig. 1. The perrnittivity and the angle of tilt between

the principal axes of the substrate and the x – y coordinate

system in the cross-sectional plane are indicated in the figure.

The permittivity tensor ?, in the x – y coordinate system can be

obtained using the coordinate transformation [9]

where

Cxyl = et, COS2e,+ Cv,sin2t9, (lb)

cxv{ = (Cq, - cf,)sind, COSO, (lC)

<w I = CVlCOS2 fjl, + cc, sin26’,. (id)

The capacitance of the rectangular coaxial line can be obtained

by determining the quasi-static potential distribution function in

the spectral domain. The static potential distribution satisfies the

Laplace’s equation

V,. [?,. vrf+,(x, y)]=o. (2)

Taking the Fourier transform with respect to x, we get

~241(&!Y) +2jcxy,pn ~$1(Bn5Y)
c.w r ayz ay - p:cxx,$,(pn, y) = o

(3)

where & is a discrete Fourier variable.

Assuming the strip conductor to be infinitesimally thin and the

charge distribution to be represented as

~(x, y)= f(x)a(y- ;-h,) (4)

where 8(Y – b/2 – hp) is the Dirac’s delta function.

Now writing down the solution of ~ ( &, y) from (3) in various

regions and matching the boundary conditions at various dielec-

tric interfaces, we get

)

_ f(~,z)
$(6.,:+% –—

/?HcoY
(5a)

where

Y=[c,f,coth(B,,(; -h.,)F,)

“rf’((’rf’coth(%)

)(
. COth(&hY@+ ~rfz / ~,fz Coth (~n~J,~2)

+C,f,cd(%))}l (5b)

~rf,=K (5C)

T=[=][l+{%/%,-l}c os20,]-’ (5d)

~(Bn) = ~,nP~(x) sin P)lxdx (5e)

11,=~, n=2,4,. ... a3. (5f)

The potential distribution function ~(f3,,, b/2+ h}) can be writ-

ten as

$(~.:+h)=~(~.:+h)++~(~:+h) ‘6a)

‘G(~n$+h@n)
(6b)

where ~, (B,,, b/2+ h}) md ?&, b/2+ h~) are the potential
distribution functions in the transform domain, on the strip

conductor and the complementary region, respectively, at the

interface y = b/2+ h,. G(&, b/2+ h~) is the Green’s function

at the plane y = b/2+ h}. Since ~d(~~, b/2+ hY) and ~(~n) are
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Fig. 1. Cross section of a rectangular coaxiaf line with offset inner conductor
sandwiched between three anisotropic dielectrics.

nonzero over complementary regions, we can eliminate

i~( $., ~/2+ ~Y) from (6) b using parsev~s theorem. Denoting
the potential on the strip conductor @C(x,b/2+ h~) as v and

noting that V= Q/C, where Q is the total charge on the strip

conductor and C is the line capacitance per unit length, we get

after some algebraic manipulations

z~ [J 1
,~(x)sin&xdx 2

—=’ ‘

‘n=’’”’”~:;.~]z “

(7)

The line capacitance of rectangular coaxial line can now be

obtained by substituting an appropriate charge distribution j(x)

on the strip conductor in (7) and evaluating the integrals. Assum-

ing a charge distribution on the strip conductor given by [6]

I
I

hX/b = by/b = C1.O,W/C. 0.’2

f :11.6, Cq=94 atO=O
c I

Present theory

---- Reference [8]
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Fig. 2, Comparison of the normalized capacitance C~ of rectangular homo-
geneous coaxial line computed using present theory with those reported in
[8].

f(x)= ;[l+Al;(x-; -hx)13], ;+hx-; <x<; +hx+;

. 0,

The constant A in the charge distribution is obtained by maxi-

mizing the line capacitance C, i.e., by setting iK\ 8A = O. Strictly

speaking, a symmetrical charge distribution given above is not

the true representation of the charge distribution for the problem

with an offset inner conductor (h, # O). However, since (7) is

variational, a symmetrical distribution (8) will introduce only

second-order errors in the capacitance calculation. For large

hx/b (very close to 0.50 (c – w)/b), the following nonsymmetri-

cal distribution should yield more accurate results:

otherwise. (8)
—

capacitance values obtained will always be less than the true

value. As a numerical check, the normalized capacitance C~ =

C/cO~ of the rectangular coaxial line ((~1 = et, t~, = c~, 6, =

f?, i =1,2,3) have been computed for the zero offset case (hX = h}

= 0.0). These results are compared with those reported by Shiblata

et al. [8] in Table I. The dielectric substrate chosen is sapphire

(($ =11.6, Cn= 9.4 at O = O). The comparison shows good agree-

ment, the present results being slightly lower. The normalized

capacitance C~ as a function of 13 for various values of b/c,

In this paper, all computations have been carried out using the

charge distribution given by (8).

III. NUMERICAL RESULTS

Using the capacitance formula (7), numerical data on the

capacitance of rectangular homogeneous/inhomogeneous coaxial

line having an infinitesimally thin offset strip conductor em-

bedded in multilayer anisotropic dielectrics have been generated.

Since the capacitance formula (7) is variational in nature, the

otherwise. (9)
—

computed using present theory, are compared in Fig. 2 with the

results reported in [8]. The comparison shows good agreement,

and once again our results are slightly lower. The normalized

capacitance C~ of a square homogeneous coaxial line filled with

sapphire dielectric as a fLU3Cti021 Of edge-offset h. fOr varilous

values of d are plotted in Fig. 3. It is observed that CN increases

as 0 or h ./b increases.

The capacitance of rectangular inhomogeneous coaxial line is

obtained by setting 6$2 = Cf, C~Z= c~, 02=0 and Ct1=~f3=, CV1
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Fig. 3. Variation of the normalized capacitance CN of square homogeneous
coaxial line with sapphire dielectric as a function of edge-offset hx/b with 0
as the parameter.

TABLE I

COMPARISONOF THE CAPACITANCE C/CO@ PERUNIT

LENGTH FORTHEZERO-OFFSETSTRUCTURESwmr SAPPHIRE
DIELECTRIC USING PRESENT THEORY WITH THOSE REPORTED

BY SHIBATA et a[. [8]

hx =o.o, hy=o.o

I
Shtbata et al [8] Present

theory

Method B Method A

o 2.37875 2.37875 2.359050

0.5 0.1

90 2.56979 2.56979 2.546988

0 2.59301 2.59301 2.569020

1.0 0.2

90 2.70460 2.70460 2.678765

0 4.63194 4.63196 4.539965

2.0 0.6

90 465335 4.65329 4.561012

I

1.1–

b

hx/b.O.O, hy/b.O.l, w/c. 0.2

E =11.6, &q,9.4 at 9,0
c

0.6

t

0.7 –

1.0

2.0
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e (0.zgrees)

Fig. 4 Normalized capacitance CN versus 0 for the rectangular inhomoge-
neous coamal line with b/c as the parameter.

= cq~=1, L91= f)~ = O in (7). For a fixed value of lZ},/b and w/c,

the variations of C~ are plotted as a function of O for three

different values of b/c in Fig. 4. The substrate chosen is sap-

phire. For a fixed value of 19,C~ decreases as b/c is increased.

This variation is similar to that obtained for rectangular homoge-

neous coaxial lines (Fig. 2). For a fixed value of b/c, CN de-

creases as d increases. This trend is opposite of that obtained in

the case of rectangular homogeneous coaxial lines. The variation

of C~ as a function of edge-offset hX for various values of 6 is

plotted for square inhomogeneous coaxial lines in Fig. 5. The

variations obtained for a fixed value of O are similar to those

obtained in the case of square homogeneous coaxial lines (Fig. 3).

On the other hand, for a fixed value of hX /b, CN decreases as O

is increased. This trend is opposite of that obtained in the case of

square homogeneous coaxial lines.

IV. CONCLUSIONS

A simple analytical technique for analyzing capacitance char-

acteristics of rectangular homogeneous/inhomogeneous coaxial

lines with an offset inner conductor having anisotropic dielectrics

is presented. Numerical data are presented on the capacitance of

rectangular and square coaxial lines. The effects of varying the

angle of tilt b’ and offsetting the strip conductor horizontally as

well as vertically are studied.

The numerical data presented in this paper are quite accurate

for most practical applications. The accuracy can further be

increased by assuming a more complex charge distribution in the

form of a polynomial on the strip conductor. This will, however,

increase the computational time.
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Incremental Frequency Rule for Computing the

Q-Factor of a Shielded TEO~P

Dielectic Resonator

DARKO KAJFEZ, SENfOR MEMBER, IEEE

Abstract —The principle of Wheeler’s incremental inductance rule is

applied to tJte TEOmPcylindrical resonator within a metaf enclosure. The
procedure permits one to compute the conductor losses solely fromi the,
decrease in resonant frequency when the metaf wafls are receded for one
skin depth.

I. INTRODUCTION

Computation of the Q-factor of metal cavities requires an
integration of the dissipated power over the entire metal surface
of the cavity. When a dielectric resonator is placed within the
metal enclosure, analytical expressions for the field distribution
become quite involved, and the numerical evaluation of Q-factor
frequently requires various simplifying assumptions in order tcl
render the solution possible [1], [2].

It is well known that the computation of conductor losses orl
the TEM transmission lines may be considerably simplifieci by
using the “incremental inductance rule” developed by Wheeler

[3]. This rule replaces the detailed surface integration by a simple
computation of the increment in inductance per unit length when
all the metal walls are receded by 8/2, where the skin depth 8 is
given by

8=&. (1;1

In the above, ~ is the frequency of operation, u is the conductiv-
ity, and p is the permeability of the metal walls.

It will be shown here that a similar trick can be applied also tc}
the TEO~P modes in rotationally symmetric hollow resonators,
but the increment which is to be calculated is now the increment
in the resonant frequency.

II. THE RULE

The Q-factor due to conductor losses of any cavity consisting

of a rotationally symmetric metrd enclosure, supporting the

TE~~P-type field, can be computed as follows:

Qc=&.

In the above, ~. is the resonant frequency of the cavity, com-

puted for the case when the metal enclosure is made of a perfect

conductors. A~O( 8 ) is the increment in the resonant frequency,

computed again for perfectly conducting walls which are now

moved inwards for one full skirt depth i?, evaluated by (l).

III. PROOF

Fig. 1 depicts a cylindrical dielectric resonator within a metal
enclosure. When the enclosure is made of a perfect conductor, the
knowledge of the magnetic-field intensity as function of position
permits one to calculate the total stored magnetic energy Wm.
When the enclosure is made of a conductor with finite conductiv-
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