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Fig. 3. Frequency variation of 3, 10, and 20-dB points on the far-field
patterns. Frequency is in units of the center frequency, and angles are in
degrees. Solid figures represent data measured near Ag = 34.2 mm and open
figures represent data measured near Ay =14 mm.
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Fig. 4. Fractional power outside a cone of a given polar angle.

levels are considerably reduced in comparison with single-mode
radiation patterns for a cylindrical waveguide [3].

The beam efficiency was obtained by integrating the 34.2-mm
patterns over all solid angles. Fig. 4 shows the fractional power
outside a cone of a given polar angle.

For the 34.2-mm horn, far-field phase measurements were
performed. The phase center was found to be 6.46 A, back from
the aperture. The far-field phase deviation relative to a spherical
wave centered at this point are summarized in Fig. 5.

Waveguide reflection loss was measured over a 30-percent
bandwidth centered at 34.2 mm. The reflected power was less
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Fig. 5. Far-field phase deviation in degrees from a sphere centered at the
phase center measured near Ay = 34.2 mm.

than —23 dB over the whole band, corresponding to a VSWR of
1.15.

IV. CoNCLUSIONS

We have designed and tested a dual-mode horn at four differ-
ent wavelengths. The horn has low sidelobe levels and nearly
equal E and H plane patterns. The patterns provide a good
match to a Gaussian beam. The far-infrared patterns have a
single well-defined phase center which is independent of polariza-
tion and frequency. The VSWR is quite low, and adequate for
near-millimeter applications. The bandwidth of the horn is be-
tween 10 and 20 percent, depending on the level of acceptable
performance required.
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Abstract —An analytical technique for the capacitance of a rectangular
inhomogeneous coaxial lirie with zero thickness offset inner conductor and
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having anisotropic dielectrics is briefly outlined. The spectral domain
technique in discrete Fourier variable, under quasi-static approximation, is
used to determine the capacitance expression. Numerical data are pre-
sented on the capacitance of rectangular homogeneous/inhomogeneous
coaxial lines having anisotrepic dielectrics. The capacitance values ob-
tained using the analytical technique presented are found to be in good
agreement with the results reported using numerical techniques by other
authors.

1. INTRODUCTION

Rectangular coaxial transmission lines consisting of an air
dielectric with a thin center conductor have been extensively used
in electromagnetic (EM) susceptibility and emission testing,
calibration of radiation survey meters, biological effects of RF
exposure, and electric and magnetic field probes for VHF and
UHF bands [1]-[2]. The impedance data on this transmission line
obtained by various workers, using different analytical and
numerical techniques, are reviewed and compared in [1]. The data
on the capacitances of rectangular structures for the edge-offset
and also broadside-offset finite-thickness strip conductor have
been obtained by Chen [3]. Singular integral equation technique
has been used by Tippet and Chang [4] to derive the capacitance
formula of the rectangular coaxial line with offset zero thickness
inner conductor. A simpler method known as the ‘Transverse
Transmission Line’ method in conjunction with the variational
technique in space domain has been reported by Bhat and Koul
[5] for analyzing edge-offset and broadside-offset shielded strip-
line, also known as rectangular coaxial line, with isotropic dielec-
trics. In subsequent papers, this technique has been extended to
analyze shielded structures with uniaxially anisotropic substrates
(61-{71.

Recently, a numerical calculation of the capacitance of a
rectangular homogeneous coaxial line with offset inner conductor
having an anisotropic dielectric with tilted optical axis has been
reported [8]. Data on capacitance of this transmission line for
various angles of tilt between the principal axes of the substrate
and the x—y coordinate system are given in this paper. To date,
there is no analytical technique reported in the literature for
solving such structures. Further, there is no analytical /numerical
technique reported for analyzing the capacitance characteristics
of a rectangular inhomogeneous coaxial transmission line having
anisotropic dielectrics.

In this paper, a brief outline of the analytical technique used is
described. The method uses the spectral domain technique with
discrete Fourier variable, under quasi-static approximation. The
capacitance expression for rectangular inhomogeneous coaxial
lines with offset inner conductor having anisotropic dielectric
substrates is presented. A comparison of the capacitance char-
acteristics of rectangular symmetric homogeneous coaxial lines
using the present theory with those reported in [8] is made.
Numerical data are presented for a rectangular inhomogeneous
coaxial line having anisotropic dielectrics.

II. BRIEF QUTLINE OF THE ANALYTICAL PROCEDURE

Consider a general rectangular coaxial line having an offset
inner conductor sandwiched between three anisotropic dielectrics
as shown in Fig. 1. The permittivity and the angle of tilt between
the principal axes of the substrate and the x-y coordinate
system in the cross-sectional plane are indicated in the figure.
The permittivity tensor €, in the x—y coordinate system can be
obtained using the coordinate transformation [9]

n €xxi Expr
el(xiy)=€0 (xyl € (la)

ryt

], i=1,2,3

where
€0 =€, €082 0, + €, sin’ g, (1b)
€y = (€, — €;,)sind, cos, (1c)
€, = €,,€05° 0, + €, sin’f,. (1d)

The capacitance of the rectangular coaxial line can be obtained
by determining the quasi-static potential distribution function in
the spectral domain. The static potential distribution satisfies the
Laplace’s equation

v,-[é,‘v,qb,(x,y)]=0. (2)
Taking the Fourier transform with respect to x, we get
az"‘bl(ﬁn’y)_*_ a&l(ﬁn’y)

9 2

ay _anexxt&I(Bnay)=0

€)

zjexytﬁn

ryt

where B, is a discrete Fourier variable.
Assuming the strip conductor to be infinitesimally thin and the
charge distribution to be represented as

p(x,0) = 1(x)3(y=5 ~h,] @

where 8(y — b/2— h,) is the Dirac’s delta function.

Now writing down the solution of ¢(8,, ) from (3) in various
regions and matching the boundary conditions at various diclec-
tric interfaces, we get

(ngon)8 o
where
r=[ema(a (8-
orf{omma(A43
-coth (B,h, B )+ s,ﬂ) /(e,fz coth(8,h, )
e coin( 225 (50)
= (50)
E=[fa/a |1+ (e /e -1} cos?8] * (50)
1(B)= [ S (x)sinxax (5¢)
=S, =240, (5£)

The potential distribution function ¢(8,,b/2+ h,) can be writ-
ten as

b(Bg+h)=b (Bt )t h(Bn5+h) (&

=G(B,5 +h,)7(8) (6)
where ¢,(B,,b/2+h,) and é,(B,,b/2+ h,) are the potential
distribution functions in the transform domain, on the strip
conductor and the complementary region, respectively, at the
interface y =b/2+ h,. G(B,,b/2+ h,) is the Green’s function
at the plane y = b/2+ h,. Since ¢,(B,,b/2+ k) and f(B,) are
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Fig. 1. Cross section of a rectangular coaxial line with offset inner conductor

sandwiched between three anisotropic dielectrics.

nonzero over complementary regions, we can eliminate
6,(B,,b/2+h ) from (6) by using Parseval’s theorem. Denoting
the potential on the strip conductor ¢.(x,b/2+h,) as V and
noting that V=0 /C, where @ is the total charge on the strip
conductor and C is the line capacitance per unit length, we get
after some algebraic manipulations

)y er[f f(x)s1n/3,,xdx]

1 n=24,.,

[j;mpf(x)dx]

The line capacitance of rectangular coaxial line can now be
obtained by substituting an appropriate charge distribution f(x)
on the strip conductor in (7) and evaluating the integrals. Assum-
ing a charge distribution on the strip conductor given by [6]

f(x)= —[1+A\ 2( <)
=0,

The constant A in the charge distribution is obtained by maxi-
mizing the line capacitance C, i.e., by setting dC/3dA4 = 0. Strictly
speaking, a symmetrical charge distribution given above is not
the true representation of the charge distribution for the problem
with an offset inner conductor (4, # 0). However, since (7) is
variational, a symmetrical distribution (8) will introduce only
second-order errors in the capacitance calculation. For large
h,/b (very close to 0.50 (¢ — w)/b), the following nonsymmetri-
cal distribution should yield more accurate results:

f(x)=%[1+A\%(x+%;§—hx)

=0,

In this paper, all computations have been carried out using the
charge distribution given by (8).

III. NUMERICAL RESULTS

Using the capacitance formula (7), numerical data on the
capacitance of rectangular homogeneous/inhomogeneous coaxial
line having an infinitesimally thin offset strip conductor em-
bedded in mutltilayer anisotropic dielectrics have been generated.
Since the capacitance formula (7) is variational in nature, the
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Fig. 2. Comparison of the normalized capacitance Cy of rectangular homo-
geneous coaxial line computed using present theory with those reported in

{8].

c w ¢ w
§+hx—-2~<x<—2—+hx+5
otherwise. (8)

capacitance values obtained will always be less than the true
value. As a numerical check, the normalized capacitance Cy =
C/eo\/ch77 of the rectangular coaxial line (€, = €;, €,, = €,, 0, =
8, i =1,2,3) have been computed for the zero offset case (h, = &,
= 0.0). These results are compared with those reported by Shibata
et al. [8] in Table I. The dielectric substrate chosen is sapphire
(e, =11.6,¢, = 9.4 at 6 = 0). The comparison shows good agree-
ment, the present results being slightly lower. The normalized
capacitance Cy as a function of # for various values of b/c,

3
[« w C w
], 5+hx———2-<x<5+hx+5
otherwise. )]

computed using present theory, are compared in Fig. 2 with the
results reported in [8]. The comparison shows good agreement,
and once again our results are slightly lower. The normalized
capacitance Cy of a square homogeneous coaxial line filled with
sapphire dielectric as a function of edge-offset &, for various
values of 6§ are plotted in Fig. 3. It is observed that Cy increases
as @ or h, /b increases.

The capacitance of rectangular inhomogeneous coaxial line is
obtained by setting €;, =¢,, ¢ €, h=0and e =¢€;~¢,
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TABLE 1
COMPARISON OF THE CAPACITANCES C /¢ /€ €, PER UNIT
LENGTH FOR THE ZERO-OFESET STRUCTURES WITH SAPPHIRE
DieLECTRIC USING PRESENT THEORY WITH THOSE REPORTED
BY SHIBATA et al. [8]

hx =0.0, hy = 0.0
b/ wfe ° C/€o Jegfy\
Shibata et al [8] Present
theory
Method B Method A
0 2.37875 2.37875 2.359050
0.5 0.1
90 2.56979 2.56979 2546988
o} 2-58301 2.59301 2569020
10 02
90 2.70460 2.70460 2678785
(o} 463194 463198 45338965
20 0.6
90 465335 4-65329 456101 2
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neous coaxial line with 4 /¢ as the parameter.

=¢€,;=1, 6,=0;=0in (7). For a fixed value of #, /b and w/c,
the variations of C, are plotted as a function of # for three
different values of #/c in Fig. 4. The substrate chosen is sap-
phire. For a fixed value of @, Cy decreases as b/c is increased.
This variation is similar to that obtained for rectangular homoge-
neous coaxial lines (Fig. 2). For a fixed value of b/c,Cy de-
creases as # increases. This trend is opposite of that obtained in
the case of rectangular homogeneous coaxial lines. The variation
of C, as a function of edge-offset h, for various values of 8 is
plotted for square inhomogeneous coaxial lines in Fig. 5. The
variations obtained for a fixed value of # are similar to those
obtained in the case of square homogeneous coaxial lines (Fig. 3).
On the other hand, for a fixed value of 4, /b, Cy decreases as 0
is increased. This trend is opposite of that obtained in the case of
square homogeneous coaxial lines.

IV. CoNcCLUSIONS

A simple analytical technique for analyzing capacitance char-
acteristics of rectangular homogeneous/inhomogeneous coaxial
lines with an offset inner conductor having anisotropic dielectrics
is presented. Numerical data are presented on the capacitance of
rectangular and square coaxial lines. The effects of varying the
angle of tilt § and offsetting the strip conductor horizontally as
well as vertically are studied.

The numerical data presented in this paper are quite accurate
for most practical applications. The accuracy can further be
increased by assuming a more complex charge distribution in the
form of a polynomial on the strip conductor. This will, however,
increase the computational time.
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Incremental Frequency Rule for Computing the
Q-Factor of a Shielded TE

. . omp
Dielectric Resonator

DARKO KAJFEZ, SENIOR MEMBER, IEEE

Abstract —The principle of Wheeler’s incremental inductance rule is
applied to the TE,,,, cylindrical resonator within a metal enclosure. The
procedure permits one to compute the conductor losses solely from the
decrease in resonant frequency when the metal walls are receded for one
skin depth.

1. INTRODUCTION

Computation of the Q-factor of metal cavities requires an
integration of the dissipated power over the entire metal surface
of the cavity. When a dielectric resonator is placed within the
metal enclosure, analytical expressions for the field distribution
become quite involved, and the numerical evaluation of Q-factor
frequently requires various simplifying assumptions in order to
render the solution possible [1], [2].

It is well known that the computation of conductor losses on
the TEM transmission lines may be considerably simplified by
using the “incremental inductance rule” developed by Wheeler
[3]. This rule replaces the detailed surface integration by a simple
computation of the increment in inductance per unit length when
all the metal walls are receded by 8 /2, where the skin depth & is
given by

o= T ¢y
Vo
In the above, f is the frequency of operation, ¢ is the conductiv-
ity, and p is the permeability of the metal walls.

It will be shown here that a similar trick can be applied also to
the TE,,, modes in rotationally symmetric hollow resonators,
but the increment which is to be calculated is now the increment
in the resonant frequency.

II. THERULE

The Q-factor due to conductor losses of any cavity consisting
of a rotationally symmetric metal enclosure, supporting the
TE ,p-type field, can be computed as follows:

fo
AR
Afo(8)

In the above, f, is the resonant frequency of the cavity, com-
puted for the case when the metal enclosure is made of a perfect
conductors. Afy(8) is the increment in the resonant frequency,
computed again for perfectly conducting walls which are now
moved inwards for one full skin depth 8, evaluated by (1).

(2)

III. PROOF

Fig. 1 depicts a cylindrical dielectric resonator within a metal
enclosure. When the enclosure is made of a perfect conductor, the
knowledge of the magnetic-field intensity as function of position
permits one to calculate the total stored magnetic energy W,,.
When the enclosure is made of a conductor with finite conductiv-
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